Lesson 7.

Introduction to dynamic programming

1 The knapsack problem

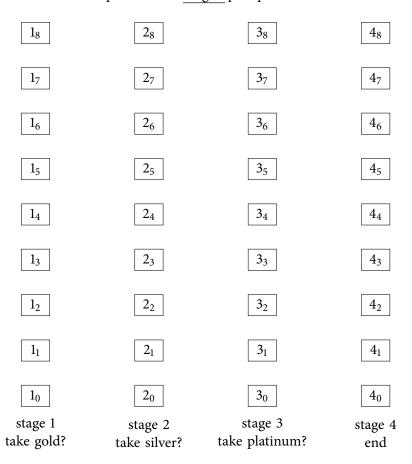
Example 1. You are a thief deciding which precious metals to steal from a vault:

	Metal	Weight (kg)	Value
1	Gold	3	11
2	Silver	2	7
3	Platinum	4	12

You have a knapsack that can hold at most 8kg. If you decide to take a particular metal, you must take all of it. Which items should you take to maximize the value of your theft?

|--|

•	We can also	formulate	this p	roblem	as a l	ongest	path	problem:
---	-------------	-----------	--------	--------	--------	--------	------	----------



• In stage $t = 1, 2, 3$, we decide whether to take me	etal t
• The last stage (stage 4) represents the end of our	decision process
• Node t_n represents	
• The edges represent the decisions we can make	
• Suppose we are deciding whether to take metal 2	2 (silver), and we have 5 kgs of space left in our knapsack
Two possible decisions:	
1. Take metal 2	
This is represented by the edge	
This decision has a value of	, so we use this as the length of this edge
2. Don't take metal 2	
This is represented by the edge	
This decision has a value of	, so we use this as the length of this edge
We can complete the rest of the digraph in a sim	nilar fashion
• Key observation. Finding an optimal solution to in this graph from node 1 ₈ to some stage 4 node	o the knapsack problem is equivalent to finding the longest path
 In this example, the longest path is 1₈ → 2₅ The longest path length tells us: 	$_5 \rightarrow 3_5 \rightarrow 4_1$ with a length of 23
 The nodes and edges in the longest path te 	ell us:
• To reformulate this as a shortest path problem:	
 Negate all edge lengths 	
 Connect all stage 4 nodes to an "end" node 	e with edges of length 0

 $\circ~$ Find the shortest path from node $\mathbf{1}_{8}$ to the finish node

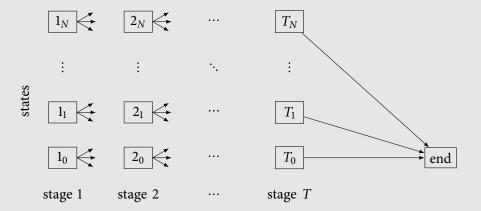
• We consider filling up our knapsack in **stages**

2 Dynamic programming

- A **dynamic program** (DP) is a mathematical model that captures situations where decisions are made <u>sequentially</u> in order to optimize some objective
- In particular:
 - o DPs divide problems into stages with a decision required at each stage
 - Each stage has a number of **states** the possible conditions of the system at that stage
 - A decision at each stage transforms the current state into a state in the next stage with some associated cost or reward
- DPs come in several different flavors, and can be described in various ways
- For now, we will think of a DP as a specially-structured shortest/longest path problem

Dynamic program - shortest/longest path representation

- Stages t = 1, 2, ..., T and states n = 0, 1, 2, ..., N
- Directed graph:



- \circ Node $t_n \longleftrightarrow$ being in state n at stage t
 - ♦ Nodes for the *t*th stage are put in the *t*th column
- Edge $(t_n, (t+1)_m) \longleftrightarrow$ the **decision** to go to state m from state n at stage t
 - ♦ Length of this edge = **cost** or **reward** of making this decision
 - \diamond An edge must connect a node in the *t*th column to a node in the (t+1)st column
- o All nodes for the last stage are connected to an "end" node with an edge of length 0
- Shortest/longest path problem:
 - Source node = one of the first stage nodes (depends on the problem)
 - Target node = end node
 - ∘ Edge lengths correspond to rewards ⇒ Find the longest path from source to target
 - Edge lengths correspond to costs ⇒ Find the shortest path from source to target

Example 2. The Simplexville Police Department wants to determine how to assign patrol cars to each precinct in Simplexville. Each precinct can be assigned 0, 1, or 2 patrol cars. The number of crimes in each precinct depends on the number of patrol cars assigned to each precinct:

	Number of patrol cars assigned to precinct				
Precinct	0	1	2		
1	14	10	7		
2	25	19	16		
3	20	14	11		

The department has 5 patrol cars. The department's goal is to minimize the total number of crimes across all 3 precincts. Formulate this problem as a dynamic program by giving its shortest/longest path representation.